Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Graph Model ; 118: 108323, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36137435

RESUMO

Steroid-based chemicals can affect the metabolism, immune functions, and development of sexual characteristics. Because of these effects, steroid derivatives are widely used in the pharmaceutical industry. Progesterone is a steroid-based hormone that mainly controls the ovulation period of women but is also a precursor molecule for the synthesis of important hormones like testosterone and cortisone. Cytochrome P450 (CYP) enzymes are important for the production of hydroxyprogesterones in the industry since they can catalyze regio- and enantioselective hydroxylation reactions. Although human CYP enzymes can catalyze hydroxyprogesterone synthesis with high selectivity, these enzymes are membrane bound, which limits their application for industrial production. CYP119 is a soluble and thermophilic enzyme from the archaea Sulfolobus acidocaldarius. Even though the native substrate of the enzyme is not known, CYP119 can catalyze styrene epoxidation, lauric acid hydroxylation, and Amplex®Red peroxidation. In this work, an in silico mutagenesis approach was used to design CYP119 mutants with high progesterone affinity. Energy scores of progesterone docking simulations were used for the design and elimination of single, double, and triple mutants of CYP119. Among designed 674 mutants, five of them match the criteria for progesterone hydroxylation. The most common mutation of these five mutants, L69G mutant was analyzed using independent molecular dynamics (MD) simulations in comparison with the wild-type (WT) enzyme. L69G CYP119, was expressed and isolated from Escherichia coli; it showed 800-fold higher affinity for progesterone compared to WT CYP119. L69G CYP119 also catalyzed progesterone hydroxylation. The novel designed enzyme L69G CYP119 is a potential versatile biocatalyst for progesterone hydroxylation that is expected to be stable under industrial production conditions.


Assuntos
Sistema Enzimático do Citocromo P-450 , Progesterona , Feminino , Humanos , Sistema Enzimático do Citocromo P-450/química , Hidroxilação , Mutagênese , Progesterona/metabolismo
2.
J Chem Theory Comput ; 17(9): 5896-5906, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34383488

RESUMO

The human ACE2 enzyme serves as a critical first recognition point of coronaviruses, including SARS-CoV-2. In particular, the extracellular domain of ACE2 interacts directly with the S1 tailspike protein of the SARS-CoV-2 virion through a broad protein-protein interface. Although this interaction has been characterized by X-ray crystallography, these structures do not reveal significant differences in the ACE2 structure upon S1 protein binding. In this work, using several all-atom molecular dynamics simulations, we show persistent differences in the ACE2 structure upon binding. These differences are determined with the linear discriminant analysis (LDA) machine learning method and validated using independent training and testing datasets, including long trajectories generated by D. E. Shaw Research on the Anton 2 supercomputer. In addition, long trajectories for 78 potent ACE2-binding compounds, also generated by D. E. Shaw Research, were projected onto the LDA classification vector in order to determine whether the ligand-bound ACE2 structures were compatible with S1 protein binding. This allows us to predict which compounds are "apo-like" versus "complex-like" and to pinpoint long-range ligand-induced allosteric changes in the ACE2 structure.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Glicoproteína da Espícula de Coronavírus/química , Análise Discriminante , Aprendizado de Máquina , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica
3.
J Pharmacol Exp Ther ; 379(2): 191-202, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34389655

RESUMO

Neurolysin (Nln) is a recently recognized endogenous mechanism functioning to preserve the brain from ischemic injury. To further understand the pathophysiological function of this peptidase in stroke and other neurologic disorders, the present study was designed to identify small molecule activators of Nln. Using a computational approach, the structure of Nln was explored, which was followed by docking and in silico screening of ∼140,000 molecules from the National Cancer Institute Developmental Therapeutics Program database. Top ranking compounds were evaluated in an Nln enzymatic assay, and two hit histidine-dipeptides were further studied in detail. The identified dipeptides enhanced the rate of synthetic substrate hydrolysis by recombinant (human and rat) and mouse brain-purified Nln in a concentration-dependent manner (micromolar A50 and Amax ≥ 300%) but had negligible effect on activity of closely related peptidases. Both dipeptides also enhanced hydrolysis of Nln endogenous substrates neurotensin, angiotensin I, and bradykinin and increased efficiency of the synthetic substrate hydrolysis (Vmax/Km ratio) in a concentration-dependent manner. The dipeptides and competitive inhibitor dynorphin A (1-13) did not affect each other's affinity for Nln, suggesting differing nature of their respective binding sites. Lastly, drug affinity responsive target stability (DARTS) and differential scanning fluorimetry (DSF) assays confirmed concentration-dependent interaction of Nln with the activator molecule. This is the first study demonstrating that Nln activity can be enhanced by small molecules, although the peptidic nature and low potency of the activators limit their application. The identified dipeptides provide a chemical scaffold to develop high-potency, drug-like molecules as research tools and potential drug leads. SIGNIFICANCE STATEMENT: This study describes discovery of two molecules that selectively enhance activity of peptidase Nln-a newly recognized cerebroprotective mechanism in the poststroke brain. The identified molecules will serve as a chemical scaffold for development of drug-like molecules to further study Nln and may become lead structures for a new class of drugs. In addition, our conceptual and methodological framework and research findings might be used for other peptidases and enzymes, the activation of which bears therapeutic potential.


Assuntos
Dipeptídeos/química , Dipeptídeos/farmacologia , Metaloendopeptidases/química , Metaloendopeptidases/farmacologia , Animais , Catálise/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Camundongos , Simulação de Acoplamento Molecular/métodos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos
4.
Biophys J ; 120(1): 158-167, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33221248

RESUMO

The translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is of longstanding medical interest as both a biomarker for neuroinjury and a potential drug target for neuroinflammation and other disorders. Recently, it was shown that ligand residence time is a key factor determining steroidogenic efficacy of TSPO-binding compounds. This spurs interest in simulations of (un)binding pathways of TSPO ligands, which could reveal the molecular interactions governing ligand residence time. In this study, we use a weighted ensemble algorithm to determine the unbinding pathway for different poses of PK-11195, a TSPO ligand used in neuroimaging. In contrast with previous studies, our results show that PK-11195 does not dissociate directly into the solvent but instead dissociates via the lipid membrane by going between the transmembrane helices. We analyze this path ensemble in detail, constructing descriptors that can facilitate a general understanding of membrane-mediated ligand binding. We construct a set of Markov state models augmented with additional straightforward simulations to determine pose-specific ligand residence times. Together, we combine over 40 µs of trajectory data to form a coherent picture of the ligand binding landscape. We find that multiple starting poses yield residence times that roughly agree with the experimental quantity. The ligand binding transition states predicted by these Markov state models occur when PK-11195 is already in the membrane and involves only minimal ligand-protein interactions. This has implications for the design of new long-residence-time TSPO ligands.


Assuntos
Isoquinolinas , Receptores de GABA , Ligantes , Ligação Proteica , Receptores de GABA/metabolismo
5.
Biochem J ; 475(14): 2257-2269, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29959184

RESUMO

Signaling molecule phosphatidylinositol 4,5-bisphosphate is produced primarily by phosphatidylinositol 4-phosphate 5-kinase (PIP5K). PIP5K is essential for the development of the human neuronal system, which has been exemplified by a recessive genetic disorder, lethal congenital contractural syndrome type 3, caused by a single aspartate-to-asparagine mutation in the kinase domain of PIP5Kγ. So far, the exact role of this aspartate residue has yet to be elucidated. In this work, we conducted structural, functional and computational studies on a zebrafish PIP5Kα variant with a mutation at the same site. Compared with the structure of the wild-type (WT) protein in the ATP-bound state, the ATP-associating glycine-rich loop of the mutant protein was severely disordered and the temperature factor of ATP was significantly higher. Both observations suggest a greater degree of disorder of the bound ATP, whereas neither the structure of the catalytic site nor the Km toward ATP was substantially affected by the mutation. Microsecond molecular dynamics simulation revealed that negative charge elimination caused by the mutation destabilized the involved hydrogen bonds and affected key electrostatic interactions in the close proximity of ATP. Taken together, our data indicated that the disease-related aspartate residue is a key node in the interaction network crucial for effective ATP binding. This work provides a paradigm of how a subtle but critical structural perturbation caused by a single mutation at the ATP-binding site abolishes the kinase activity, emphasizing that stabilizing substrate in a productive conformational state is crucial for catalysis.


Assuntos
Contratura/enzimologia , Simulação de Dinâmica Molecular , Atrofia Muscular/enzimologia , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/química , Proteínas de Peixe-Zebra/química , Peixe-Zebra , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , Animais , Contratura/genética , Humanos , Atrofia Muscular/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Domínios Proteicos , Proteínas de Peixe-Zebra/genética
6.
PLoS One ; 12(4): e0176262, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28437479

RESUMO

The chaperone trigger factor (TF) binds to the ribosome exit tunnel and helps cotranslational folding of nascent chains (NC) in bacterial cells and chloroplasts. In this study, we aim to investigate the functional dynamics of fully-atomistic apo TF and its complex with 50S. As TF accomodates a high percentage of charged residues on its surface, the effect of ionic strength on TF dynamics is assessed here by performing five independent molecular dynamics (MD) simulations (total of 1.3 micro-second duration) at 29 mM and 150 mM ionic strengths. At both concentrations, TF exhibits high inter- and intra-domain flexibility related to its binding (BD), core (CD), and head (HD) domains. Even though large oscillations in gyration radius exist during each run, we do not detect the so-called 'fully collapsed' state with both HD and BD collapsed upon the core. In fact, the extended conformers with relatively open HD and BD are highly populated at the physiological concentration of 150 mM. More importantly, extended TF snapshots stand out in terms of favorable docking onto the 50S subunit. Elastic network modeling (ENM) indicates significant changes in TF's functional dynamics and domain decomposition depending on its conformation and positioning on the 50S. The most dominant slow motions are the lateral sweeping and vertical opening/closing of HD relative to 50S. Finally, our ENM-based efficient technique -ClustENM- is used to sample atomistic conformers starting with an extended TF-50S complex. Specifically, BD and CD motions are restricted near the tunnel exit, while HD is highly mobile. The atomistic conformers generated without an NC are in agreement with the cryo-EM maps available for TF-ribosome-NC complex.


Assuntos
Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/metabolismo , Simulação de Dinâmica Molecular , Ribossomos/metabolismo , Ligação Proteica , Conformação Proteica
7.
ACS Omega ; 2(5): 2165-2177, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023656

RESUMO

Pseudoisocytidine (ΨC) is a synthetic cytidine analogue that can target DNA duplex to form parallel triplex at neutral pH. Pseudoisocytidine has mainly two tautomers, of which only one is favorable for triplex formation. In this study, we investigated the effect of sequence on ΨC tautomerization using λ-dynamics simulation, which takes into account transitions between states. We also performed in vitro binding experiments with sequences containing ΨC and furthermore characterized the structure of the formed triplex using molecular dynamics simulation. We found that the neighboring methylated or protonated cytidine promotes the formation of the favorable tautomer, whereas the neighboring thymine or locked nucleic acid has a poor effect, and consecutive ΨC has a negative influence. The deleterious effect of consecutive ΨC in a triplex formation was confirmed using in vitro binding experiments. Our findings contribute to improving the design of ΨC-containing triplex-forming oligonucleotides directed to target G-rich DNA sequences.

8.
Biophys J ; 106(12): 2656-66, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24940783

RESUMO

We performed a detailed analysis of conformational transition pathways for a set of 10 proteins, which undergo large hinge-bending-type motions with 4-12 Å RMSD (root mean-square distance) between open and closed crystal structures. Anisotropic network model-Monte Carlo (ANM-MC) algorithm generates a targeted pathway between two conformations, where the collective modes from the ANM are used for deformation at each iteration and the conformational energy of the deformed structure is minimized via an MC algorithm. The target structure was approached successfully with an RMSD of 0.9-4.1 Å when a relatively low cutoff radius of 10 Å was used in ANM. Even though one predominant mode (first or second) directed the open-to-closed conformational transition, changes in the dominant mode character were observed for most cases along the transition. By imposing radius of gyration constraint during mode selection, it was possible to predict the closed structure for eight out of 10 proteins (with initial 4.1-7.1 Å and final 1.7-2.9 Å RMSD to target). Deforming along a single mode leads to most successful predictions. Based on the previously reported free energy surface of adenylate kinase, deformations along the first mode produced an energetically favorable path, which was interestingly facilitated by a change in mode shape (resembling second and third modes) at key points. Pathway intermediates are provided in our database of conformational transitions (http://safir.prc.boun.edu.tr/anmmc/method/1).


Assuntos
Algoritmos , Estrutura Secundária de Proteína , Adenilato Quinase/química , Anisotropia , Chaperonina 60/química , Simulação por Computador , Bases de Dados de Proteínas , Escherichia coli/enzimologia , Método de Monte Carlo
9.
BMC Struct Biol ; 13: 29, 2013 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-24206668

RESUMO

BACKGROUND: To understand the effect of the long intracellular loop 3 (ICL3) on the intrinsic dynamics of human ß2-adrenergic receptor, molecular dynamics (MD) simulations were performed on two different models, both of which were based on the inactive crystal structure in complex with carazolol (after removal of carazolol and T4-lysozyme). In the so-called loop model, the ICL3 region that is missing in available crystal structures was modeled as an unstructured loop of 32-residues length, whereas in the clipped model, the two open ends were covalently bonded to each other. The latter model without ICL3 was taken as a reference, which has also been commonly used in recent computational studies. Each model was embedded into POPC bilayer membrane with explicit water and subjected to a 1 µs molecular dynamics (MD) simulation at 310 K. RESULTS: After around 600 ns, the loop model started a transition to a "very inactive" conformation, which is characterized by a further movement of the intracellular half of transmembrane helix 6 (TM6) towards the receptor core, and a close packing of ICL3 underneath the membrane completely blocking the G-protein's binding site. Concurrently, the binding site at the extracellular part of the receptor expanded slightly with the Ser207-Asp113 distance increasing to 18 Å from 11 Å, which was further elaborated by docking studies. CONCLUSIONS: The essential dynamics analysis indicated a strong coupling between the extracellular and intracellular parts of the intact receptor, implicating a functional relevance for allosteric regulation. In contrast, no such transition to the "very inactive" state, nor any structural correlation, was observed in the clipped model without ICL3. Furthermore, elastic network analysis using different conformers for the loop model indicated a consistent picture on the specific ICL3 conformational change being driven by global modes.


Assuntos
Receptores Adrenérgicos beta 2/química , Asparagina/metabolismo , Sítios de Ligação , Epinefrina/farmacologia , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Adrenérgicos beta 2/metabolismo , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...